Algebra and Algebraic Manipulation - Remedial Lesson 4

Grade: Applicable Knowledge and Skills to All High School Math Courses
Subject: Remedial Math
Find More at www.birichardsonmath.weebly.com

Driving Question: How do I piece all my skills and knowledge together to solve multistep equations? How do I achieve mastery of this?

Purpose: An exceptional amount of difficulty in high school mathematics is due to inadequate algebraic manipulation skills. The amount of students that have difficulty solving a simple linear equation is staggering. The purpose of this Algebra Mini Series is to address these gaps in skills and hopefully increase student achievement by allowing them to focus on the curriculum without getting caught up in prerequisite skills.

In this particular lesson, we are assuming that the student has a decent understanding of how to use inverse operations in single step equations. The purpose of this lesson is to provide the student with practice and formative feedback as they make their way towards mastery of multi-step equations.

Prior Knowledge: Students should be aware of the natural, whole, integer, and rational number systems, as well as basic arithmetic operations with these systems. Basic number sense is also assumed. The students should have a very firm grasp of the order of operations.

Ideally the students would have also studied the previous lessons or have a strong concept of what algebra is, understand how to evaluate expressions, and to solve simple one step equations. Student would also benefit from understanding collecting like terms and understanding that multiplying by a reciprocal is equivalent to dividing.

Screencast Link(s):

Solving Example One - https://www.youtube.com/watch?v=SJB8uuixSqg
Solving Example Two - https://www.youtube.com/watch?v=i3YVzH6p m8

Expected Time: The design of this lesson is to be an individualized system of instruction, thus time would depend directly on the students' progress. If attempting as an entire class the lesson would likely take two 75-minute periods (this includes assessment tasks and time for formative feedback).

Resources:

Lesson Procedure

(Tools \&
Tech)
Internet Access

	Due to the nature of the lesson, the educator's role becomes addressing issues after the student has had time to work through the lesson. The Resource in that sense is a truly flipped lesson, but the resources within could easily be used within a blended model. I do: Assess the student's current skills with basic algebraic concepts and operations and if required, direct the to the student instruction form. Student Instruction Form: If possible, find some time to go over the students assessments and show them how their difficulties with basic algebra is directly impacting the achievement of their outcomes. You should be prepared for this to be the majority of errors. It may be helpful to target particular operations (for example undoing addition and subtraction, etc.). You may ask students to point out areas where they believe algebraic manipulation have cost them the opportunity to demonstrate the outcome. Again, this is likely to be a high percentage of errors, and thus most students could benefit from such work. This provides the students and opportunities to find, analyze, and evaluate their skills with guidance.
	find, validate - Let the students find areas on assessments that were difficult due to algebraic manipulation of multistep equations. \square critically think and analyze - Look at what skills in particular would've benefited your ability to demonstrate understanding. \square collaborate and communicate - The teacher should direct the student to the remedial lesson and then both should trouble shoot any difficulties, technology or otherwise, the student might have in completing the lesson
	You do: The students should begin by watching the screencasts listed above. The first video takes them through solving two basic linear equations. The first equation requires them to undo addition/subtraction first, and then undo multiplication/division. In the second example, parentheses were added to show how this order is not always the same. The hope is that students will relate the order to the reverse of evaluation. The second video brings in a much more complex example that has a variety of operations in it. It also deals with an exponent and makes mention of its inverse operation. Now the student needs time to assess their understanding. The following links will take the student to a variety of web resources directed at multistep equations. The activities that have been selected should provide the

| | necessary formative feedback and practice for the student to master the
 skills and knowledge.
 The students should attempt the activities until they feel they've reached a
 level of mastery...and then do a few more to be sure. The following screen
 shots and links show where to find the selected activities.
 Activity 1: Read Through More Examples - Monterey Institute:
 http://www.montereyinstitute.org/courses/DevelopmentalMath/COURSE
 TEXT2 RESOURCE/U10 L1 T2 text final.html |
| :--- | :--- | :--- |
| Activity 2: Solving Multi-step Equations - Algebra Lab:
 http://www.algebralab.org/lessons/lesson.aspx?file=algebra onevariablem
 ultistep.xml
 Activity 3: Solving Multi-Step Equations - IXL:
 https://www.ixl.com/math/grade-8/solve-multi-step-equations | |
| ם remember, understand, evaluate and leverage - the students are being
 asked to connect the knowledge and skills remembered from the
 screencasts to understanding the tasks in the activities. In solving the tasks
 of the activities, the students are leveraging the remembered knowledge to
 meet the goal. If they need additional support from the provided examples
 or supplementary videos, they must evaluate the information being
 presented before leveraging it. | |
| \square collaborate - the apps could easily be done in groups or with parents. The | |
| possibilities for collaboration exist. The 'challenge' idea mentioned above | |
| could easily be done in groups. | |

